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Ecosystem Service Valuation (ESV) is a process of evaluating and quantifying the monetary values of ESs
and their functions. Using both biophysical and spatially explicit integrated models, biophysical and
monetary values of key Ecosystem Services (ESs) were estimated in the Sundarbans Biosphere Region
(SBR), India. Quantification was made both in time series (1982—2017) and individual years (1973, 1988,
2003, 2013, 2018, 2025, 2035, 2045) to understand the impact of climate change and land-use dynamics
on the long-term ecological status of the region. The monetary and biophysical values of the ESs were
then obtained from Net Primary Productivity (NPP) models, Integrated Valuation of Ecosystem Services
and Trade-offs (InVEST), and Cellular Automata Markov Chain Model (CA-Markov). NPP increased
significantly during the first half period (1982—1999), but significantly declined during the second period
(2000—2017). The highest estimated ESVs (US$ ha~') was found for habitat service (30780), nutrient
cycling (12626), and gas regulation (7224.81), whereas, lower ESVs were approximated for water
regulation (347.81), raw material production (777.82) and waste treatment (13.57) services. Among the
nine ESs evaluated, climate regulation, gas regulation, and disturbance regulation were the most
important regulating services of the SBR. The combined effects of climate change and land-use dynamics
on ESs are much stringent in a vulnerable region like the SBR. Most of the regulating services were
closely associated with the fluctuation of land use land cover input. Thus, land management policies and
land reform strategies that will encourage the conversion of productive land, especially the highly
productive mangrove forest, for the development or any other financial benefits, would disturb the ideal
human-nature balance of this ecosystem. The outcomes of this study also provide an important reference
to the land administrators, researchers, and decision-makers to comprehend the expected social-
ecological juxtaposition in a protected natural reserve region like the Sundarbans.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Ecosystem services (ESs) are the opportunities and benefits that
humans obtain from natural capitals (MA, 2005; Braat and de
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Ecosystem service values (ESVs) are quantified estimates of natural
goods and services (Johnston and Russell, 2011), which indicate
economic significance (Sannigrahi et al., 2018, 2019a,b) as well as
the status and health of an ecosystem (Peng et al., 2015; Costanza,
2012; Yan et al, 2016). Several direct and indirect factors are
responsible for the destabilization of ESs (Chen et al., 2019; Wu
et al, 2019; Marx et al,, 2019; Sahle et al., 2019). These factors
include biophysical dynamics (e.g., changes in climatic conditions,
soil properties, plant functional structure, ecological compositions,
and structures) and anthropogenic activities (e.g., land degradation,
land use change) (Lii et al., 2012; Hauck et al., 2013; Zoderer et al.,
2016; Langerwisch et al., 2017; Wang et al., 2018; Zhang et al., 2018,
2019). However, identification of these factors and as well as the
estimation of their relative contributions to the degradation of ESs
is challenging (Marx et al., 2019; Sannigrahi et al., 2020).

The green capital, derived from many natural goods and ser-
vices, provides an opportunity for measuring the substantial
impact of empowering human development and socio-economic
welfare (MA, 2005; Costanza et al., 2014, 2017). However, little
effort has been made so far to explore these aspects. The Millen-
nium Ecosystem Assessment (MA, 2005) found that 60% of the ESs
and natural goods are under threat due to the exploitation of nat-
ural resources by humans. Therefore, proper monetary evaluation
is essential to assess the aspects related to the violation of ESs (Liu
et al, 2019b; Watson et al., 2019). Consistent and timely ESs
assessment can be an alternative for measuring the status and
health of an ecosystem (Yu and Han, 2016; Peng et al., 2015;
Costanza, 2012). Therefore, in this study, an effort has been made to
evaluate the status of a natural reserve region through the spatially
explicit valuation of ecosystem services.

The interaction among ESs can be categorized into two types —
positive (synergy) and negative (trade-off), depending on the types
of ESs taken into consideration (Cademus et al., 2014; Sannigrahi
et al,, 2019a). Synergy refers to the unidirectional change of two
ESs and exhibits a win-win situation that involves a shared increase
of two ESs (Tomscha and Gergel, 2016). Whereas, trade-offs refer to
a win-lose or lose-win situation when the supply inputs in gaining
one ES would reduce another ES (Rodriguez et al., 2006; Wang
et al., 2019). Amongst the four interaction groups of ESs, trade-
offs often occur between the provisioning and regulating services
(Bennett et al., 2009; Haase et al., 2012; Li and Wang, 2018).

The spatial trade-off and synergy are apparent when prioriti-
zation of one group of ESs leads to a restriction of another group of
ESs, happening especially in inter-regional ES assessment (Liu et al.,
2018; Li et al., 2018). For instance, forest degradation in a hilly re-
gion for road construction can cause a long term decline of regu-
lating services such as freshwater supply, climate regulation and
erosion control in another region (Luo et al., 2018). The temporal
trade-off explains that the current uses of ESs of a given region
influence the future changes of the same ESs under different
management scenarios (Liu et al., 2018). For example, the excessive
use of chemical fertilizers and pesticides for increasing food grain
can manifest a negative impact on water quality, habitat provision,
biodiversity, and/or soil formation in future time. Finally, the term
spatial and temporal synergy refers to the unidirectional increases
of multiple ESs that happen both spatially and temporarily (Yang
et al., 2018; Luo et al., 2018).

In this study, ecosystem service values in the Sundarban
Biosphere Region (SBR) were quantified using different valuation
approaches. The quantification utilized a set of approaches
including Integrated Valuation of Ecosystem Services and Trade-
offs (InVEST) biophysical models, replacement cost, damage cost,
mitigation cost, direct benefit transfer, market-based valuation, and
expert-based valuation. The SBR was selected as the study region
because of its highly important landscape with the biodiversity and

ecological significance. Despite the profound significance in deliv-
ering multiple key ecosystem services for sustaining human well-
being and improving the overall socio-ecological status of the re-
gion, only a few studies have evaluated the economic suitability of
this ecosystem (Everard et al., 2019; DasGupta et al,, 2019). The
present study is carried out for different single reference years, i.e.,
1973, 1988, 2003, 2013, and 2018, for a time-lagged assessment of
ecosystem services. In addition, a continuous time-series assess-
ment from 1982 to 2017 was also performed to assess the impact of
climate change and land degradation on ecosystem services in the
SBR. Several other aspects, including the time-lagged and spatio-
temporal assessment of trade-offs and synergies, the cellular
automata Markov chain (CA-Markov) model with future prediction
of land use and land cover (LULC) for assessing the impact of
landscape changes on ESs, conservation priority zonation and
ecosystem service hotspot assessment, were integrated to describe
the overall socio-ecological status of the region and its linkages
with the provision of ecosystem services. Specific objectives of this
study are (1) quantifying the monetary values of different ESs using
InVEST and other valuation approaches; (2) estimating future LULC
changes and their effects on ESs; (3) investigating time-lagged and
spatial trade-offs and synergies between ESs to measure the impact
of management factors on ESs.

2. Materials and methods
2.1. Study area

The Sundarbans Biosphere Region (SBR) is a highly productive
region, earning itself as one of the biodiversity hotspots in the
world. The Sundarbans mangrove is the largest single tract
mangrove forest in the world with an aerial extent of 10,000 km?,
among which India and Bangladesh share 40% and 60%, respec-
tively (Giri et al., 2011). The SBR ecosystem is of critical importance
for its profound biological and ecological values. Several biodiver-
sity and environmental protection measures have been initiated
under the scheme of the National Man and Biosphere Programme
to preserve the ecological stability of this region. The landward
limits of this region are demarcated by the Dampier-Hodges line.
The SBR consists of several eco-sensitive areas including the Sun-
darbans National Park (SNP), Sundarban Tiger Reserve, Wildlife
Sanctuaries, i.e., Sajnekhali, Haliday Island, and the Lothian Island
(Fig. 1). Additionally, the entire SBR is sub-divided into several
distinct eco-regions including the core zone (1700 km?), a buffer
zone (2400 km?), restoration zone (230 km?) and development
zone (5300 km?) (Nandy and Kushwaha, 2011). The increasing
physical (sea level rising, coastal erosion, flood, storm surge) and
socio-economic (environmental migration, economic instability,
lack of livelihood options) threats apparent in the Sundarbans,
especially in the last decades, seek thorough socio-ecological
analysis to explore the economic importance of the Sundarbans.
The mangrove ecosystems of the Sundarbans are highly beneficial
for protecting coastal biotic and abiotic communities from seawater
intrusion, flood, storm surges wind/tide/wave actions and
providing many provisioning services such as fishing, food pro-
duction, honey collection, forestry products. Additionally, among
the 50 true mangrove plant species documented throughout the
world, the Sundarbans (considering both Indian and Bangladesh
share) alone comprise 35 species, which earmarks the great sig-
nificance of this vibrant and pristine ecosystem (Rahman and
Asaduzzaman, 2013).

2.2. Data preparation and analysis

In this study, 16-day time series of 30m spatial resolution
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Fig. 1. (a), (b), (c), (d) Location of the study region, (e) location of Sundarban flux tower (After Rodda et al., 2016) and NPP derived from five ecosystem models.

Landsat Multispectral Scanner (MSS), Thematic Mapper (TM),
Enhanced Thematic Mapper (ETM), and Landsat Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) data products
were utilized to classify the SBR into several land use and land cover
(LULC) units. Landsat Tier 1 data products, which have the
maximum available data quality (Liu et al., 2019a; Qiu et al., 2019),
were used for time-series LULC analysis. The Landsat Tier 1 data
collection comprises Level-1 Precision and Terrain (L1TP), which
exhibits a negligible geometric error (= 12m radial root mean
square error) and a high image-to-image tolerance approximation
(https://[www.usgs.gov) (Storey et al., 2014; Dwyer et al., 2018).
Additionally, smoothed and filtered MOD13Q1 16 day composite
250m time series Enhanced Vegetation Index (EVI) and Normalized
Difference Index (NDVI) datasets for 2000—2017 were retrieved
from the University of Natural Resources and Life Sciences, Vienna
(https://search.earthdata.nasa.gov/search?q=MOD13Q1%
2520V006). For the earlier period (1982—1999), the advanced very
high-resolution radiometer (AVHRR) NDVI data were also utilized
for the estimation of net primary productivity (NPP) and ecosystem
services (ESs). Using the ArcPy python package module (https://
www.esri.com/en-us/home), 16-day MOD13Q1 NDVI/EVI scenes
was aggregated into the yearly unit for the final calculation.

The required climatic data layers, including maximum, mini-
mum and average temperature (°C), precipitation (mm), latent heat
(W m~2 s 1), sensible heat (W m~2 s~1), incoming solar radiation
(W m™2), actual and potential evapotranspiration (mm), surface
runoff (mm), soil moisture (mm), vapor pressure (kPa), vapor
pressure deficit (kPa), and climate water deficit (mm), were
retrieved from TerraClimate (http://www.climatologylab.org/
terraclimate.html). The detail description of these data layers is
given in Table 1.

The carbon pool information for the InVEST carbon model is
derived from the published literature (Liang et al., 2017; Sil et al.,
2017; Clerici et al., 2019). The soil data layers including root
depth, plant available water content, soil texture, and soil organic
carbon were derived from the Food and Agriculture Organization
Harmonized World Soil Database v1.2 (http://www.fao.org/soils-
portal/soil-survey/soil-maps-and-databases/harmonized-world-
soil-database-v12/en/) and National Bureau of Soil Survey and Land
Use Planning (NBSS&LUP, Govt. of India) (https://nbsslup.in/). The
topographic variables, including elevation and slope, were derived
from 90m Shuttle Radar Topography Mission (SRTM) data (http://
srtm.csi.cgiar.org/). Development indicators including road layers,
location of the urban and residential centers, were derived from the


https://www.usgs.gov
https://search.earthdata.nasa.gov/search?q=MOD13Q1%2520V006
https://search.earthdata.nasa.gov/search?q=MOD13Q1%2520V006
https://search.earthdata.nasa.gov/search?q=MOD13Q1%2520V006
https://www.esri.com/en-us/home
https://www.esri.com/en-us/home
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://nbsslup.in/
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/

4 S. Sannigrahi et al. / Journal of Cleaner Production 257 (2020) 120424

Table 1
Description of data layers used in this study.
Data layer  Source Description Spatial Temporal
Resolution Resolution

MOD13Q1 https://search.earthdata.nasa.gov/search? Smoothed EVI and NDVI data 250m 16 days

AVHRR q=MOD13Q1%2520V006, http://ivfl-info.boku.ac.at/ Normalized Difference Vegetation Index-3rd generation (NDVI) using the 1/12° Daily

GIMMS https://ecocast.arc.nasa.gov/data/pub/gimms/ Global Inventory Monitoring and Modeling System (GIMMS).

Climate http://www.climatologylab.org/terraclimate.html  Climatic layers, including Maximum, minimum, average, and optimum 0.05° Monthly

data https://esgf-node.llnl.gov/search/cmip5/ temperature, precipitation, solar radiation, actual and potential 0.5625 * Daily/

Future https://www.worldclim.org/cmip5_30s evapotranspiration, runoff, soil moisture, vapor pressure, and vapor pressure 0.55691342 yearly

Climate deficit 1 km Monthly
Data Model for Interdisciplinary Research on Climate (MIROC) Representative

Concentration Pathway (RCP) 4.5 precipitation, temperature data for 2025 and

2035

Hadley Global Environment Model 2 WorldClim temperature and precipitation

data for 2045

LULC https://earthexplorer.usgs.gov/ Landsat MSS, TM, ETM+, OLI/TIRS 30m 16 days

Carbon pool http://data.naturalcapitalproject.org/nightly-build/ Aboveground and belowground carbon, soil carbon, carbon density in dead — —
invest-users-guide/html/carbonstorage. organic matter
html,Literature

Root depth http://www.fao.org/soils-portal/soil-survey/soil- Root restricting layer depth 30 arc- —
maps-and-databases/harmonized-world-soil- second
database-v12/en/

PAWC http://www.fao.org/soils-portal/soil-survey/soil- Plant Available Water Content 30 arc- —
maps-and-databases/harmonized-world-soil- second
database-v12/en/

Watershed http://www.india-wris.nrsc.gov.in/wrpinfo/index. — Digital watershed atlas of India - -
php?title=WRIS_Publications

DEM http://srtm.csi.cgiar.org/srtmdata/ Elevation data - —

Soil data http://www.fao.org/soils-portal/soil-survey/soil- Soil properties including texture and organic matter 30 arc- -
maps-and-databases/harmonized-world-soil- second
database-v12/en/

Road, rail  https://www.openstreetmap.org/#map=>5/47.428/ Road, railway line, state and national highway, location of urban centre, — —

line 22.676 residential centre

Biophysical http://releases.naturalcapitalproject.org/invest- For InVEST carbon sequestration, water yield, sediment delivery, habitat — —

tables userguide quality, and nutrient delivery models

open street map (https://www.openstreetmap.org/#map=>5/47.
428/22.676). Demographic information of the study region
including population and population density was derived from
district  statistical handbook  (https://www.wbpspm.gov.in/
publications/District%20Statistical%»20Handbook).

To evaluate the performance of NPP models, one-sample and
paired sample Student’s t parametric tests were performed. A total
of ten pairs of the model were prepared to measure the similarity of
model estimates. Additionally, several statistical techniques
including the coefficient of determination (R?), root mean square of
error (RMSE), mean absolute percentage error (MAPE), Durbin
Watson (DW), Mallows Cp coefficient, Akaike information criterion
(AIC), and Schwarz’s Bayesian information criterion (SBC) were
utilized to evaluate the trade-offs and synergies among the ESs.

2.3. Estimation of net primary production using light use efficiency
models

In this study, five ecosystem production models were adopted,
including Carnegie Ames Stanford Approach (CASA), Eddy Covari-
ance Light Use Efficiency Model (ECLUE), Vegetation Photosyn-
thesis Model (VPM), Moderate Resolution Imaging
Spectroradiometer Model (MOD17), and Global Production and
Efficiency Model (GLO-PEM), to estimate net primary production
(NPP) and ESs. The description of the datasets is provided in Table 1.

2.3.1. CASA model

The Carnegie-Ames-Stanford-Approach (CASA) model devel-
oped by Potter et al. (1993) has been widely used in the literature to
estimate NPP (gC m~2 year~!) using remotely sensed satellite data,
meteorological inputs (temperature, precipitation, solar radiation),
surface and atmospheric moisture stress factors (land-water stress,

vapor pressure deficit, land surface temperature) (Crabtree et al.,
2009; DefFries et al., 1999; Ruimy et al., 1999; Cramer et al., 1999;
Seixas et al., 2009). In this model, NPP is the function of Absorbed
Photosynthetically Active Radiation (APAR MJ m~2 year~!) and light
use efficiency (LUE gC MJ~!). APAR is the function of photosyn-
thetically active radiation (PAR MJ m~2 year—!) and a fraction of
APAR, the latter of which is derived from the linear approximation
of normalized difference vegetation index — NDVI and alternatively
from enhanced vegetation index — EVI. PAR is the half of incoming
shortwave solar radiation (MJ m~2 year™!). Additionally, the actual
LUE is affected by the water stress factors derived from the ratio of
actual and potential evapotranspiration, and the temperature stress
factor derived from the deviation of maximum, minimum, and
optimum temperatures from the ideal condition. Details about the
model parameterization, input data are given in Tables S1 and S2.

2.3.2. EC-LUE model

The Eddy Covariance-Light Use Efficiency model, developed by
Yuan et al. (2007), assumes that vegetation productivity controlled
by the limiting factors (surface moisture and air temperature) at
any given time. This model has been successfully applied in various
eco-regions across the world (Yuan et al.,, 2007, 2014; Xie et al,,
2019; Zhang et al., 2015) to estimate spatiotemporal Gross Pri-
mary Productivity (GPP) and other carbon estimates. In this model,
GPP (g€ m~2 year™!) is the function of fPAR, PAR, and Liebig min-
imum temperature stress derived from the ration of average,
minimum, maximum, and optimum temperatures, and water stress
derived from the ratio of latent heat and sensible heat.

2.3.3. VPM model
The vegetation photosynthesis model (VPM) developed by Xiao
et al. (2004) assumes that LUE of plant canopy depends on the
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temperature sensitivity, moisture sensitivity, and leafage of a can-
opy. The water stress factor used in this model is derived from the
ratio of actual and maximum land surface water index (LSWI).

2.3.4. GLO-PEM model

The Global Production Efficiency Model (GLO-PEM) developed
by Prince and Goward (1995) has been successfully used in several
ecosystems across the world to estimate terrestrial NPP and GPP
(Wang et al.,, 2014; Zhang et al., 2015). In this model, GPP is the
function of fPAR, PAR, temperature stress factor (same as VPM
model), water stress factor (same as ECLUE model), and vapor
pressure deficit (VPD), which can be calculated from actual and
saturated vapor pressure estimates.

2.3.5. MOD17 model

The MOD17 GPP model (Running et al., 2004, 2014) is based on
the function of fPAR, PAR, maximum LUE, land cover, vapor pres-
sure deficit (VPD) and the temperature stress factor (Running et al.,
2004). The biome-specific LUE for each ecosystem was approxi-
mated according to the results of Yuan et al. (2014) and Running
et al. (2004, 2014). The detail descriptions about the ecosystem
models are given in Sannigrahi et al. (2018).

2.4. Classification and prediction of LULC with machine learning
algorithms

2.4.1. Classification of LULC for past and current years

To obtain the best land classification estimates for valuation and
quantification of multiple ESs, 10 machine learning algorithms
were used for classifying the regions into several identical
ecosystem units that match the existing global and regional land
cover classification schemes. These models include Artificial Neural
Network (ANN), Bayes, Decision Tree (DT), Gradient Boosted Tree
(GBT), Linear Discriminant Analysis (LDA), K Means Nearest
Neighbour (KNN), Maximum Likelihood Classifier (MLC), Random
Forest (RF), Support Vector Machine (SVM) Linear, and Radial Basis
Function (RBF). The classification for five reference years, including
1973, 1988, 2003, 2013, and 2018 was performed. The details of
classification methods, accuracy assessment, and model evaluation
are discussed in Sannigrahi et al. (2019a).

2.4.2. Prediction of future LULC

Using the existing land use information, future land use sce-
narios were predicted using the Cellular Automata Markov Chain
(CA-Markov) model. Landsat Multi-Spectral Scanner (MSS), Landsat
5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper
(RTM), and Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) Tier 1 geometrically and radiometrically
processed data (except Landsat MSS) were used for image classi-
fication and subsequent analysis. Both area-based and pixel-based
accuracy assessment approaches were applied for evaluating the
accuracy of classification estimates and model performances
(Sannigrahi et al., 2019b). Several similarities and dissimilarity
matrices were used for assessing the inter-model consistency and
strength-weakness of the algorithms. High-resolution Google Earth
images were used for the thematic accuracy assessment and model
evaluation. Post classification approaches, such as majority filter,
boundary clean, nibble, and set null, were applied for removing
isolated pixels from classification estimates. The details about the
machine learning models used for LULC classification, accuracy
assessment, and (dis)similarity assessments have been provided in
Sannigrahi et al. (2019a).

For the future prediction of LULC and ESVs, the CA-Markov
model and Integrated Valuation of Ecosystem Services and Trade-
off (InVEST) were used in this study. The LULC maps of 2003 and

2013 were used to compute the transition probability matrix using
the Markovian transition estimator module and to produce the
projected LULC map for 2018. A total of 10 driving variables,
including distance to rail line, distance to road, distance to highway,
distance to urban center, distance to residential center, distance to
water surface, distance to urban activity center, DEM, slope, pop-
ulation density, were utilized to produce the transition suitability
maps (Hou et al., 2019). After combining the Markovian transition
suitability matrix and CA-based transition suitability maps, the area
of different LULC categories for multiple reference years was then
estimated. After that, the accuracy of the projected LULC with the
existing LULC derived from the machine learning model was eval-
uated. The CA-Markov model calculated potential area transitional
probabilities for different land classes, which are discussed in
Table S5. The other reference information including sample fea-
tures for each identical land use class retrieved from Google Earth
imagery, existing land use maps of the study region, was also uti-
lized for analyzing the accuracy of the projected LULC map. After
deriving satisfactory estimates between the reference and classified
maps, the Markov transition matrix was applied in the next step to
simulate the future land cover maps, ESs, and ESVs for 2025, 2035,
and 2045.

2.5. Estimations of biophysical and economic values of multiple ESs

2.5.1. Gas regulation service

The gas regulation services of a natural capital can be measured
with three methods: (1) photosynthesis and respiration formulae;
(2) test and survey method; (3) a mathematical model (Guo et al.,
2001). In this study, the standard photosynthesis and respiration
equation was used to estimate the economic values of gas regula-
tion services as follows:

C0,(264g) + H,0 (108g)
—CgH106 (180g) + O (193g) (1)
— Amylase (162g)

Where CO,and H;,Oare the carbon-di-oxide and water components,
respectively; C, Hand O are Carbon, Hydrogen, and Oxygen com-
ponents, respectively.

The amount of Oxygen released by a green canopy to produce 1g
of dry matter is approximated as 1.2g. Using these the two com-
ponents, i.e., carbon capture and oxygen release, the gas regulation
service was estimated as follows:

GR, = (1.62*NPP*PCO,) + (1.2 x NPP x PO,) 2)

Where GR, is the economic value (US $) of gas regulation services;
NPP is the net primary productivity (g€ m~2 year!) of a pixel; PCO,
and PO, are prices of carbon sequestration (the social cost of carbon
value, which is 315.62US$ ton C for India, was used in this study as a
proxy) and oxygen production (125 US$ ton O; in India); the values
of 1.62 and 1.2 are the equivalent values derived from photosyn-
thesis equation (Song et al., 2015a; Xiao et al., 2005; Ricke et al.,
2018; Sun et al., 2016).

2.5.2. Climate regulation service

Two different methods were employed to estimate the bio-
physical and economic values of climate regulation service. The first
method is based on the calculation of NPP. The spatiotemporal NPP
was estimated using five ecosystem models. Later on, the bio-
physical values of NPP (ton C) was used as a proxy to estimate the
climate regulation service as follows:
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NPPy x Cp 3)

Where NPP is the net primary productivity value (ton); x, t are the
particular pixels and time; C, is the price of carbon. In this study,
the social cost of carbon value (315.62 US$ ton C) was used as a
proxy of the carbon price (Ricke et al., 2018). The information on
carbon pools was derived from published literature and model
user’s documentation (Tables S6 and S6).

2.5.3. Disturbance regulation service

The flood disturbance is associated with the capacity of the
landscape to regulate the excess water that enters the landscape
due to floods (Carreno et al., 2012). This also depends on the oc-
cupancy of the water surface, which can expand and absorb the
impact of water excess. There are several proxies being used to
compute the economic values of disturbance or water regulation
services. Among them, the cost of reservoir/dam construction value
was used in this study. Two components, the occupancy of water
bodies in the landscape and water input into the system (precipi-
tation), were utilized to compute the disturbance regulation ser-
vice, formulated as follows:

Where DR, is the value disturbance regulation; I,y is the water input
into the system (precipitation); Oy, is the water bodies occupancy
percentage; the value of 1.25 is the correction factor; Ppcis the price
of dam construction (0.24 US$ m3) (http://cwc.gov.in/national-
register-large-dams).

2.5.4. Water regulation and water yield service

The distribution of different LULC types can have a significant
impact on surface water flow. Most of the agrometeorological
variables including actual and potential evapotranspiration, water
use efficiency, water retention efficiency, and runoff potential are
directly or indirectly determined by the land-use variation
(Blumstein and Thompson, 2015). Therefore, a proper assessment
of the changes in land-use patterns and their effects on surface
water flow is highly needed (Krause et al., 2008). The hydrological
regulation and water purification are two main components that
need to be measured separately to quantify the per unit water
conservation (WC) service of a region. The hydrological regulation
denotes the retention of surface water flows by a green substance in
ecosystems. In this study, the economic values of water conserva-
tion service using the equation of surface water balance was
calculated as follows:

WR,= 10GA; (Pi— Ei— () (5)

Where WR, is the value of water conservation service; C;is the cost
of reservoir construction (0.24 US$ m~2 in India) (http://cwc.gov.in/
national-register-large-dams); A;is the area of ecosystem type; P;is
the precipitation (mm year™!); E;is the evapotranspiration (mm
year~!); Gis the surface runoff (mm year~!) (Hu et al., 2018; Xu
et al., 2018; Yang et al., 2018). Here, the surface runoff C; can be
determined by rainfall, a number of rain events, land use land cover
types, and soil types (Xu et al., 2018).

Additionally, in this study, the InVEST 3.4.4 Water Yield Model
was incorporated to estimate the biophysical values of water yield
service of the Sundarbans region. Several studies revealed that the
InVEST water yield model has a high level of accuracy when pre-
dicting the surface water flow at the landscape scale (Redhead et al.,
2016; Hu et al., 2018). According to the surface water balance
principle, the water yield of an ecosystem is equivalent to the

difference between precipitation and actual evapotranspiration.
This model also includes the effects of other variables, i.e., avail-
ability of soil moisture, surface water flow, water retention capacity
of green canopy, and canopy interception on water yield capacity
and associated water conservation service. The other input vari-
ables of the InVEST water yield model include root depth, plant
available water content (PAWC), land use and land cover, water-
shed, and sub-watershed, which are given in Table 1. The model
default value 7 was selected as the Z parameter (Hu et al., 2018). In
InVEST water yield model, the actual evapotranspiration was
calculated using the approach proposed by Zhang et al. (2001) and
Budyko’s hypothesis, shown as follows:

AET,;
Yx':(‘l* PX])XP)( (6)

X

Y,; is the water yield of land use type j and pixel x; AET,;is the actual
evapotranspiration (mm) of land use type j and pixel x; Pxis the
precipitation (mm) of pixel x. The AET,;/Py was approximated using
the Budyko’s curve principle, shown as follows:

AETXj _ 1+ a)xij
P, \1+ WxRyj + (1/ij)

(7)

Where Ry;are the Budyko index of dryness for land use type j and
pixel x, and the Budyko dryness is based on the ratio between
potential evapotranspiration (mm) and precipitation (mm); wyis
the dimensionless ratio of plant available water content to accu-
mulated annual rainfall, which can be estimated as follows:

AWC
Px

wx= Z (8)

Where AWCy is the volumetric plant available water content (mm);
Zis the seasonality factor which captures the precipitation and
other hydrological patterns and characteristics. Additionally,
Budyko’s dryness index can be calculated as follows:

k,;ETo
Xj = XJPX “ (9)

Where k,;is the evaporation factor for land use type j and pixel x;
EToyis the reference evapotranspiration of pixel x (Carreno et al.,
2012; Yu and Han, 2016; Hu et al,, 2018; Xu et al., 2018; Lang
et al,, 2017). The EToy is derived from the Hargreaves-Samani 4
method as follows:

EToy = 0.0009384R; x (Tmax — Timin) 4% x (T +17.8) (10)

Where R;is the incoming shortwave solar radiation (M] M’Z); Tmax,
Tinin» and T are the maximum, minimum, and average temperatures
(°C), respectively (Valipour, 2015; Trajkovic, 2007).

2.5.5. Soil conservation service

The InVEST SDM model uses a comprehensive approach to es-
timate the per pixel soil erosion, soil retention by the downstream
surface vegetation, and sediment export, respectively. The SDM
first calculates the quantity of annual soil loss of a pixel, then
quantify the resultant sediment delivery ratio (SDR), which is the
proportion of soil that gets eroded and eventually reached to the
downstream. After settling the eroded sediments into the stream, it
would finally end up at the downstream catchment outlet (Sharp
et al, 2018; Tallis et al.,, 2011). To calculate the amount of soil
conserved, the annual actual and potential soil loss was estimated
for 1973, 1988, 2003, 2013, 2018, 2025, 2035, and 2045 reference
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years using Revised Universal Soil Loss Equation (RUSLE) and SDM.
The specific inputs required to run the SDM include digital eleva-
tion model (DEM), rainfall erosivity index derived from precipita-
tion, soil erodibility derived the soil type data, land use land cover
types for estimating the management factor. The SDM and RUSLE
can be mathematically described as:

A = R* K; * IS; * G * P, (11)

Where Ais the actual annual soil loss (tons ha~! year~1); R;is the
rainfall erosivity factor (M] mm ha~' h™! year '); Kjis the soil
erodibility factor (ton ha h Mj~! mm~! ha~1); LS;is the slope and
steepness factor (unitless); Cjis the crop management factor
(unitless); P;is the support practice factor (unitless). After that, the
potential annual soil loss was estimated as follows:

AA = R* K; * LS; (12)

Where 4Ais the potential annual soil loss (tons ha~! year™!). Fol-
lowed by, the amount of soil retention was estimated as follows:

SR; = dA—A (13)

Where SR;is the amount of annual soil retention (tons ha~! year™).
The soil erodibility factor was estimated as follows:

parameter, Borselli ICO parameter, and max sediment retention
(SDR) value were chosen as 1000, 2, 0.5, and 0.8. Additionally, the
per-pixel sediment delivery ratio (SDR) and sediment export were
estimated as follows:

SDR; = SDR$ (17)
IG—IG;
1+exp (OT)
SE; = RUSLE; x SDR;
SE = "SE; (18)
i

Where SDR;is the sediment delivery ratio of the pixel i; SDRmaxis
the maximum SDR, and kare the calibration parameters; IC;is the
connectivity index of pixel i; SE;is the sediment export (ton ha™!
year— ') from pixel i; SEis the total catchment sediment export (ton
ha~! year™1).

For estimating the economic value of soil conservation service,
the valuation of soil fertility and productivity approach was adop-
ted in this study. The information about the three principal soil
fertilizer components including the Nitrogen (N), Phosphorous (P),
and Potassium (K) was aggregated, and subsequently, the value of
soil conservation was estimated as follows:

B —0.0256SAN(1 — SIL) siL %3
K = 0.1317 x {0.2+0.3 exp[ 100 ” X (m) )
0.25C 0.7SNI
x|1.0 — x 11.0 —
C+exp(3.72 — 2.95C) SN1 +exp(—5.51 + 22.9SNI)
Where SAN, SIL, and CLAare the sand, silt, and clay fraction (%); Cis n
the soil organic carbon content (%); SNIis equal to 1— SAN/ 100 Ve = ZSRi x C; x P; (19)

(Jiang et al., 2016; Fang et al., 2018; Zhang et al., 2017). The steep-
ness and slope (LS) factor can be estimated as follows:

s_ sinfd \°%®
~ \0.0896

A m
L= (313)
m = 0.05 0>9
m = 0.04 9>60>3
m = 0.03 3>60>1

m=002 1>
(15)

Where 1is the slope length (m); mis the slope length coefficient;
is the gradient (Su et al.,, 2012; Fang et al., 2018). Followed by, the
annual rainfall erosivity factor was estimated as follows:

R = 0.0483p1610

R =587.8 — 1.219P + 0.004105P?

P > 850mm

Where Pis the annual rainfall (mm) (Renard and Freimund, 1994;
Lee and Heo, 2011). The cover management and support practice
factors were approximated using the approach presented by
Cerretelli et al. (2018). The threshold flow accumulation, Borselli k

i—1

Where Vscis the economic value of soil conservation service; SR;is
the annual soil retention of pixel i; G;is the N, P, K content in the soil,
which is N = 0.0478%, P = 0.0563%, and K = 1.8%,P;is the price of N,
P, and K (Kibria et al., 2017a; Song et al., 2015b; Carreno et al., 2012).
The no-data pixels for all the raster layers used as inputs in the
InVEST SDR model were assigned as 0. Additionally, the LULC layer
was converted to integer format, and other inputs were converted
to floating format to conduct the SDR model. The row, column, and
cell size of the given inputs were kept the same for all the images
used in this model.

2.5.6. Nutrient control service

The Nutrient Delivery Ratio (NDR) model depicts the land use
and climatic change effects on the surface nutrient loss and
resulting water quality of an ecosystem (Tallis et al., 2011). For
estimating the per pixel nutrient retention (NR), the InVEST 3.4.4
NDR model was used. The NDR model needs raster and vector in-
puts including digital elevation model (DEM), land use and land
cover (LULC) types, nutrient runoff proxy (precipitation), water-
shed and sub-watershed layers, a biophysical table that includes
the load of nutrient, the nutrient retention efficiency, and critical
length information for each ecosystem. The NDR model estimated
the per unit NR using four steps: (1) the average annual water yield
was estimated for each ecosystem types; (2) the average yearly
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Fig. 2. Spatial distribution of the ecosystem service values of different ecosystem services.




S. Sannigrahi et al. / Journal of Cleaner Production 257 (2020) 120424 9

nutrients that exported from each ecosystem types were calculated
using the equivalent value derived from literature; (3) the nutrient
load is estimated using the routing water along the path; finally, (4)
the amount of nutrients retained by the green vegetation was
estimated using the nutrient retaining efficiency values approxi-
mated for each LULC (Yang et al., 2018; Rukundo et al., 2018; Cabral
et al., 2016). The information about the threshold accumulation
value, Borselli k parameter, subsurface critical length for N and P,
subsurface maximum retention efficiency for N and P is given in
Table S8.

The economic value of the nutrient cycling service is derived
from the NPP based estimates as follows:

NCy =Y NPPx x Ry x Ry x P; (20)

Where NCy is the economic value of nutrient cycling service; NPPyis
the net primary productivity (ton ha~!) value of pixel x; R;;is the
distribution rate of the major nutrient elements N, P, K in organic
matter for different LULC; R;,is the converted coefficients of N, P, K
to corresponding chemical fertilizer; P; is the price of N, P, K. The
values of RN, R P, and R K were approximated as 2.14, 6.55, and
1.91, respectively (Kibria et al., 2017). The RiyN, RjP, Rj;Kwere
derived based on the methods by (Ray, 2018; Ray et al., 2014, 2015)
(http://www.iiss.nic.in/mapd_7.htm).

2.5.7. Waste treatment service

The economic values of waste treatment service of the natural
capitals were separately calculated in this study, as derived from
the function of annual NPP (ton ha), annual precipitation, and water
bodies occupancy percentage as follows:

WTy = NPP x (1 — CVjpp) X Iy x Oy x 1.75 x Py (21)

Where WTyis the economic value (US$ ha—!) of waste treatment
service; NPP is the net primary productivity (ton ha=1); CVyppis the
coefficient of variation of NPP; I,,is the water input into system
(0—1); Owis the water bodies occupancy percentage; P,is the
average waste treatment cost (Wang et al., 2010; Carreno et al.,
2012; Yu and Han, 2016; Zhang et al., 2017; Watson et al., 2016).

2.5.8. Raw material provision service

The biophysical values of raw material provision service were
derived from the NPP estimates. The NPP is a proxy for evaluating
the global and local climate regulation as it depicts the net carbon
uptake from atmosphere and oxygen releases into the atmosphere.
In this study, the richness of biomass and the provision of organic
materials were quantified from the annual NPP estimated for
different ecosystem types. Multiple ecosystem production models
were implemented to estimate the spatiotemporal NPP. Addition-
ally, the economic value of raw material production service was
calculated using the energy substitution approach proposed by
Song et al. (2015a), shown as follows:

VRM = NPPI X PRM (22)

Where Vi is the economic value of raw material provision service;
NPP; is the net primary productivity of pixel i; Pgyis the price of raw
material calculated as follows:

Pray = NPP; x 2.2 x 0.67 x Ps¢ (23)

Where Pgcis the price of standard coal (=3000 INR in 2015) (Coal
India Limited, Govt. Of India, 2015). The production of raw material
is derived from the NPP using the following approximation: 1 g of
carbon = 2.2 g of organic matter (Song et al., 2015a). Subsequently,

using the energy substitute approach, the amount of energy avail-
able in one unit of organic biomass is derived from the following
approximation: 1 g organic matter is equal to 0.67 g of standard
coal (Song et al., 2015a).

2.5.9. Biological control/biodiversity management

Using the landscape scoring approach (Burkhard et al., 2009,
2014) and NPP based proxy method, the biophysical and economic
values of biological control (BC) and biodiversity management
(BDM) services were estimated. A total of eight experts were cho-
sen based on their familiarity and awareness of the research
problem. The calculation of the services is given below:

n n

BC=Ai x Y BG x> VCjy (24)
i=1 i=1

BDM =NPP x (1 —CVppp) x hy x Wf x 1.75 (25)

Where BCis the biological control service; Ais the area of land use
type k; BGjis the capacity of different landscapes to provide
ecosystem service j (expert score for wildlife abundance was
selected for estimating BC service); VCjis the adjusted value coef-
ficient for land use type k and ecosystem service j, derived from
Sannigrahi et al. (2019a); BDMis the biodiversity management
service; CVyppis the coefficient of variation of NPP; I,is the water
input into the system (precipitation, value ranges from 0 to 1); Nris
the naturalness factor; the value of 1.75 is the multiplicative factor
(Barral and Oscar, 2012; Carreno et al., 2012; Zhang et al., 2017).

2.5.10. Habitat provision

To quantify the biophysical and economic values of habitat
provision service, the InVEST 3.4.4 habitat quality model and
biomass-based proxy approaches were used. NPP was used as a
proxy to quantify the per unit biomass of the study region. The
annual rainfall and temperature data were used for evaluating the
effects of climatic factors on habitat provision. The final calculation
is described below:

HP =NPP; x (1 — CVnpp) x Fprg % Fremp % (1 —Farr) (26)

VHP =HP x PHP (27)

Where HP is the biophysical value of habitat service; CVypp is the
coefficient of variation of NPP; Fpggis the favorable precipitation;
Frempis the favorable temperature; Fupris the altitude, Vypis the
economic value of habitat service; Pypis the price of habitat service
(derived from Sannigrahi et al., 2019b). Additionally, the InVEST
habitat suitability model was also used to quantify the biophysical
values of habitat provision service, and the details are given in
Tables S9 and S10.

2.5.11. Cultural service

The cultural ecosystem services (CES), including aesthetic,
tourism, recreation, educational, spiritual, inspiration and social
relations, are often conceived as the nonmaterial opportunities and
benefits brought by natural capitals that are as important as its
counterparts including the regulating, supporting, and provisional
services (MA, 2005). Using the landscape capacity scoring approach
proposed by Burkhard et al. (2009, 2014), the economic value of CES
was estimated as follows:
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Fig. 3. The biophysical values of different ecosystem services derived from InVEST model.




S. Sannigrahi et al. / Journal of Cleaner Production 257 (2020) 120424 1

Table 2
Total carbon storage estimates (Mg C) for different reference years.

Total Carbon storage (Mg C)

Net Present value from current to future (US$)

Year Current Future Changes
1973 78331769.38 78521069.19 461692.21 94673480.19
1988 78521069.19 79633984.38 1104463.01 226478635.8
2003 79633984.38 77009844.88 —2624137.83 —622434537.1
2013 77009844.88 81692843.15 4697569.7 1300937089
2018 81684981.32 82493356.19 808367.19 210179528
2025 82493356.19 83647453.32 1154099.75 273747568.2
2035 83647453.32 84678479.19 1031024.82 244554686.6
2045 84678479.19 - - -
Where yis the time series least square estimates; ais the model
n n . . .
Vegs = A x Z CES; x Z VG (28) }ntercept, Bis the spatlotemporal slope of EVI/NDVl/fPAR/NPP dur-
= = ing 1982—2017; T;is the MODIS data collection year (Li, 2012;

Where Vgsis the value of cultural ecosystem service; Agis the area
(ha) of land use type k; CES;is the capacity of different landscapes to
provide ecosystem services j; VCis the adjusted values coefficient
of ecosystem service type j and land use type k. An expert opinion
survey was conducted to estimate the score of each landscape to
provide the necessary ecosystem services. Totally eight experts
were selected to obtain their responses. Subsequently, a landscape
score matrix was prepared where the x (row) axis represents
different land-use types, and the y-axis (column) represents the
types of ecosystem services. Using the 5 point Likert scale method,
(0 = no relevant capacity, 1 = low relevant capacity, 2 = relevant
capacity, 3 = medium relevant capacity, 4 = high relevant capacity
and 5 = very high relevant capacity), the score for the relevant
services were attained. The experts involved in the scoring process
were suggested to provide scores for each landscape depending on
their capacity to provide multiple ecosystem services. The details of
the expert score are given in Table S11. The adjusted value co-
efficients (VCy) for different land-use types were retrieved from
Sannigrahi et al. (2019a).

2.6. Estimation of (non)spatial trend of biophysical variables and
ESs

The spatiotemporal changes of different biophysical variables
(e.g., EVI, NDVI, fPAR, NPP), climatic variables (i.e., precipitation and
temperature), and ESs during the 1982—2017 (36 years) were
analyzed. The seasonal and annual variations of EVI, NDVI, and fPAR
were evaluated to understand the climatic effects on ecosystem
productivity. Average 23—24 MODIS EVI/NDVI time-series data
layers for each year were integrated for estimating the annual
variation of EVI/NDVI during 2000—2017. Additionally, to examine
the long term seasonal and annual changes of the principal bio-
physical variables including NDVI, EVI, fPAR, and NPP during
1982—2017 in the Sundarbans region, pixel-level spatiotemporal
trends were calculated using the ordinary least squares (OLS)
regression approach. The directional (both positive and negative)
changes of the aforementioned biophysical components were
examined through the estimated slope values for each pixel. The
OLS method has deemed a robust and comprehensive approach to
evaluate the long-term dynamics of biophysical variables of an
ecosystem (Leroux et al., 2016). In this study, the OLS considered
time as an independent variable and pixel-level EVI/NDVI/fPAR/
NPP as response variables in order to perform the time-lagged and
continuous trend analysis, which is represented as follows:

y=a+B.T; (29)

Leroux et al., 2016; Verbesselt et al., 2010; Fang et al., 2018; Jacquin
et al.,, 2010). Additionally, to analyze the time series trends of the
meteorological and biophysical variables, the rank-based non-
parametric Mann-Kendall (MK) test was performed. The “Kendall”
package for R statistical software was applied to conduct the MK
test. Additionally, the spatial (i.e., pixel-level) trend and slope of the
response variables were also evaluated using the python ArcPy
package.

2.7. Calculation of time-lagged, spatial and non-spatial trade-offs
and synergies

To evaluate the spatial and non-spatial synergy and trade-offs
among the biophysical variables and ecosystem services, the
Pearson correlation test was performed at pixel and grid level for
both time series and individual reference years, i.e., 1973, 1988,
2003 and 2017. For the pixel-wise correlation analysis, the ArcPy
python package was used. PerformanceAnalytics statistical package
for R statistical software was used to measure the Pearson corre-
lation matrix at the grid-scale. Totally 36 data layers (1982—2017,
36 years) were aggregated to perform the Pearson correlation test.
Both trade-off (negative correlation) and synergy (positive corre-
lation) associations among the variables were evaluated. For grid-
level analysis, the average values of the biophysical variables
were extracted at a 3 km*3 km scale using the ArcGIS zonal sta-
tistics tool (https://www.esri.com/en-us/home). Followed by, a to-
tal of 1481, 1518, 1513, and 1513 sample points were generated for
four reference years to evaluate the performance of NPP models.
Meanwhile, for pixel-level analysis, a total of 356051, 365898,
377990, and 371356-pixel values were extracted from the corre-
sponding raster layers. These data were assembled for multiple
reference years, including 1988, 2003, 2013, and 2017. Additionally,
this information was extracted from three ecosystem types,
including cropland, mangrove, and mixed vegetation for examining
the biome-specific sensitivities of the NPP models.

2.8. Estimation of climate and land use impacts on ESs

The changing climate and degradation of productive land have a
significant adverse impact on ESs. However, quantification of such
aspects is a challenging task, and the big interest lies in the inno-
vation of new approaches that could estimate the efficient assess-
ment of the disappearance of the valuable ESs that result in
monetary loss. Using both InVEST and the CA-Markov model, future
losses/gains of land use and ESs were estimated. The biophysical
values of five ESs including the carbon sequestration, habitat suit-
ability, water yield, sediment retention, and nutrient retention
were estimated for 1973, 1988, 2003, 2013, 2018 as well as for 2025,
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Fig. 4. Spatiotemporal changes of the ecosystem services at P < 0.05 level. The black and white colors showing the statistically significant and non-significant changes.

2035, and 2045 reference years. To measure the climate change
impact on ESs, current and future predicted precipitation, tem-
perature, and evapotranspiration data were incorporated into the
model. The details about the present and future meteorological
datasets are given in Table 1. In addition, to evaluate the land-use
change effects on ESs, present, and future LULC data were com-
bined with the spatially explicit InVEST model. Besides, to evaluate

the effects of the 10 explanatory variables that were used for per-
forming the CA-Markov land-use transition model, the Pearson
Correlation coefficient matrix was performed at the P < 0.001 level.

2.9. Univariate local indicators of spatial association (LISA)

The global Moran’s [ statistic quantifies the spatial
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Fig. 5. shows the pixel wise slope of the key ecosystem services. The positive slope indicates the positive changes and negative slope indicates the negative changes of the

ecosystem services.

autocorrelation of a distributed features as a whole, while the local The local Moran’s I index is narrated as follows:
indicators of spatial association (LISA) assess the location-specific

spatial autocorrelation using local Moran’s I index (Anselin, 1995;
Levine, 2004; Zhang et al., 2008; Fu et al., 2014). The local Moran’s |
index has been found to be the most useful indicator to identify the

distribution of spatial clusters and spatial outliers (Harries, 2006).

(30)
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Where Z is the mean value of z; z; is the value of the variable at
locationi; z; is the value at other positions (where j= i); o2 is the
variance of z; and wj; is a distance weighting between z; and z;,
which can be defined as the inverse of the distance. The weight can
also be determined using a distance band, namely samples within a
distance band are given the same weight, while those outside the

distance band are carried the weight of 0; n is the sample number

(Zhang et al., 2008; Fu et al.,, 2014). A high positive local Moran’s |
value signifies a similar spatial distribution of ESs during the study
period (high-high clusters-hotspot and low-low clusters-cold spot)
to its neighbours, thus generating spatial clusters of ESs. The
occurrence of high—high and low—low clusters can be due to the
distribution of high values of ESs with a high value in neighbour
states and low values of ESs with a low value in neighbour states,
respectively. The spatial outliers of ESs distribution are character-
ized by a high negative local Moran’s I value. This means the spatial
distribution of ESs is quite dissimilar from the estimates of their
neighbour features. Spatial outliers comprise high—low approxi-
mation (island) where a high value of ESs with a low value of ESs in

Table 3
Interaction between major ESs represented by several statistical indicators.

Pair R? RMSE MAPE DW Cp AIC SBC P

C/HA 0.003 0.02 124576.61 1.23 —6006.61 —290137.81 —290129.25 < 0.0001
C/N_Exp 0.376 1.04 627.27 0.19 —25872.36 2668.76 2677.33 < 0.0001
C/P_Exp 0.264 0.34 10614.93 030 —21891.28 —82360.33 —82351.77 < 0.0001
C/Sed_Exp 0.006 1.98 348122.37 1.94 —1525.79 52822.90 52831.46 < 0.0001
C/Sed_Ret 0.000 45.35 558.40 1.96 -2716.79 295157.13 295165.69 < 0.0001
C/WY 0338 4282.54 48.62 0.00 —37559.57 647059.18 647067.74 < 0.0001
HA/N_Exp 0.039 1.23 461.97 0.19 —25872.36 16055.36 16063.93 < 0.0001
HA/P_Exp 0.056 0.40 2634.67 0.25 —21891.28 —71148.27 —71139.70 < 0.0001
HA/Sed_Exp 0.001 2.00 224931.58 1.91 —1525.79 53502.77 53511.34 < 0.0001
HA/Sed_Ret 0.002 46.19 175.82 191 -2716.79 296575.62 296584.19 < 0.0001
HA/WY 0.078 7301.25 89.57 0.15 —37559.57 688340.25 688348.82 < 0.0001
N_Exp/P_Exp 0.919 0.08 5590.50 0.79 —21891.28 -192761.06 -192752.50 < 0.0001
N_Exp/Sed_Exp 0.033 1.93 105205.54 2.00 —1525.79 50792.15 50800.72 < 0.0001
N_Exp/Sed_Ret 0.001 45.42 495.22 1.92 -2716.79 295263.95 295272.52 < 0.0001
N_Exp/WY 0.715 3563.56 4417 0.48 —37559.57 632838.16 632846.72 < 0.0001
P_Exp/Sed_Exp 0.039 1.92 18901.46 2.00 —1525.79 50542.78 50551.34 < 0.0001
P_Exp/Sed_Ret 0.000 45.62 420.78 191 -2716.79 295613.32 295621.88 < 0.0001
P_Exp/WY 0.610 4349.22 54.22 0.47 —37559.57 648254.68 648263.25 < 0.0001
Sed_Exp/Sed_Ret 0.627 27.96 55.33 1.81 -2716.79 257741.80 257750.37 < 0.0001
Sed_Exp/WY 0.011 7598.55 96.81 0.09 —37559.57 691428.62 691437.18 < 0.0001
Sed_Ret/WY 0.003 7524.79 94.25 0.13 —37559.57 690673.83 690682.40 < 0.0001

RMSE = Root Mean Square Error; MAPE = Mean Absolute Percentage Error; DW = Durbin Watson; cp = Mallows Cp coefficient; AIC = Akaike’s Information Criterion; SBC =
Schwarz’s Bayesian Criterion.
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Table 4

Correlation matrix between the driving factors and biophysical ESs derived from InVEST model.
Variables C HA N_Exp P_Exp Sed_Exp Sed_Ret WY PD UA RU ROAD WB RES_C RAIL HWAY
C 1 -0.032 -0.625 -0.541 -0.086 0.004 —-0.595 -0.183 0.469 -0.152 0.604 -0.165 0.165 0.689 0.649
HA <0.0001 1 -0.210 -0.229 -0.023 0.052 —0.293 0.558 -0.322 -0.215 -0.259 0.014 -0.337 -0.273 -0.262
N_Exp <0.0001 <0.0001 1 0.969 0.192 0.021 0.847 -0.118 -0.153  0.225 —0.254 0.064 0.095 -0.290 -0.270
P_Exp <0.0001 <0.0001 <0.0001 1 0.206 0.019 0.786 -0.169 -0.119 0.241 -0.216 0.076 0.123 —-0.251 -0.235
Sed_Exp <0.0001 <0.0001 <0.0001 <0.0001 1 0.772 0.109 —0.021 -0.036 0.046 —0.048 0.009 0.000 —0.054 -0.060
Sed_Ret  0.395 <0.0001 <0.0001 0.000 <0.0001 1 —0.057 0.047 -0.035 -0.016 -0.030 -0.010 -0.042 -0.033 —0.042
WY <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 -0.229 -0.072 0.235 -0.178 -0.008 0.123 -0.175 -0.155
PD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 -0.503 -0.254 -0.388 0.192 -0.558 -0.478 —-0.400
UA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 0.187 0.811 —-0.212 0.551 0.857 0.830
RU <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.003 <0.0001 <0.0001 <0.0001 1 0.153 —0.009 0.209 0.053 0.071
ROAD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 —0.255 0.465 0.834 0.842
WB <0.0001 0.006 <0.0001 <0.0001 0.100 0.049 0.108 <0.0001 <0.0001 0.077 <0.0001 1 —-0.142 -0.284 -0.315
RES_C <0.0001 <0.0001 <0.0001 <0.0001 0.960 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 0.360 0.417
RAIL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 0.895
HWAY <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1

C = Carbon storage; HA = Habitat Degradation, N_Exp = Nitrogen Export; P_Exp = Phosphorus Export; Sed_Exp = Sediment Export; Sed_Ret = Sediment Retention; WY =
Water Yield; PD = Population Density; UA = Distance to Urban Activity centre; RU = Distance Rural and Urban centre; Road = Distance to Road; WB = Distance to Water
Bodies; RES_C = Distance to Residential Centre; RAIL = Distance to Rail line; HWAY = Distance to Highway.

neighbour states, and low—high (atoll) where a low value of ESs
with a high value in neighbour states (Zhang et al., 2008; Fu et al.,
2014; Palomares et al., 2015; Fan and Myint, 2014). To perform the
LISA test, the GeoDa spatial analysis software module was used in
this study.

3. Results

3.1. Spatiotemporal distribution and variation of biophysical and
climatic variables

The time series trend of NPP and climatic variables (precipita-
tion and temperature) is described in Fig. S1. The average temper-
ature shows an incremental trend from 1982 to 2017, while the
annual precipitation has shown a negligible temporal change dur-
ing the study period. Fig. S2 shows the time-based changes of NPP
(g€ m~2 year~1) during the research period. Since there were two
different NDVI/EVI data products, one ranges from 1982 to 1999,
and the other is extended from 2000 to 2017, the time series trend
of NPP for two different periods (1982—1999 and 2000—2017) were
evaluated. For the first half, NPP was increased significantly
(R? = 0.56, Adj. R? = 0.53). The mean NPP (gC m~2 year~!) was 235
in 1982 which have then increased up to about 286 in 1999. For the
second half, a significant decline of NPP was detected (R® = 0.56,
Adj. R? = 0.53). The average NPP (gC m 2 year ') was projected at
346 in 2000, which decreased up to 272 in 2017 (Table S12).
Additionally, the time-series changes of NPP derived from the five
ecosystem models are found statistically significant at P < 0.0001
significance level (Table S3).

The seasonal dynamics of the biophysical variables are shown in
Figs. S3 and S4. The peak monthly EVI, NDVI, and fPAR values were
observed during the post-monsoon season (September—October —
November). The availability of high soil moisture could be the
reason for higher NDVI and EVI concentration during this season.
However, in 2017, a sharp peak of NDVI is observed during the pre-
monsoon period (April-May). This might due to high pre-
monsoonal rainfall occurred during this season in 2017. Fig. S5
shows the annual mean NPP (gC m~2 year~!) derived from five
ecosystem models, i.e., CASA, ECLUE, GLO-PEM, MOD7, and, VPM
for four reference years. The VPM model has produced the lowest
average NPP among the models, followed by MOD17, GLO-PEM,
ECLUE, and CASA. Highest NPP was observed in 2003, and a
comparatively lower NPP was estimated in 1988 and 2017. A
noticeable variation of NPP is evident in this study, and it is due to

the uneven distribution of land use and land cover and anomalies of
the climatic variables which could be critical determinants of
vegetation productivity.

The spatiotemporal changes of the key biophysical (EVI, NDVI)
and climatic variables (precipitation, temperature) were assessed
through pixel-level trend analysis (Fig. S6). The EVI and NDVI was
decline significantly in the western part of Sundarbans and Kolkata
suburban region during 1982—2017. Several factors including the
urbanization especially over the Kolkata and the surrounding re-
gion, mangrove degradation due to severe coastal erosion,
increasing salinity especially the western part of the region, could
be associated with the declining status of EVI and NDVI observed in
this study. In Indian Sundarbans, there are no such ecological
restoration policies that could explain the regional vegetation
changes and land degradation. However, in the last few decades, a
sharp increase of the shrimp aquaculture area is evident in and
around Sundarbans which is also detected through time series
satellite imageries. This could be the main reason for the declina-
tion of EVI/NDVI (regional vegetation change). Since people living
in this fragile ecosystem has very limited livelihood options, they
are likely to be depended more on the services with direct or
marketable benefits, rather than the indirect services provided by
mangroves. The changes in precipitation and temperature during
1982—2017 were found statistically not significant (Fig. S6). The
paired sample student’s t-test also demonstrated that all the
ecosystem models employed in this study are statistically different
from one another (Table S4). Different model parametrization and
conceptual and structural differences among the models could be a
reason for these differences.

3.2. Evaluating the performances of ecosystem models

The performance of the five ecosystem models, i.e., CASA,
ECLUE, GLO-PEM, MODIS, and VPM was assessed through the
Pearson correlation coefficient matrix for four reference years
(Fig. S7) and three major ecosystems (Fig. S8). For all reference
years, the VPM model has produced a very high association for
MODIS and ECLUE model. The MODIS NPP is highly correlated with
the GLOP-PEM, and ECLUE derived NPP. Considering the correlation
values of five ecosystem models, a weak to the moderate associa-
tion was observed between VPM NPP/CASA NPP and VPM NPP/
GLO-PEM NPP, while the strong association is accounted between
the VPM/ECLUE NPP and VPM/GLO-PEM NPP. It was observed that
all those models were performed most accurately over the
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Fig. 8. The fuzzy distance (0—1) estimated for the ten driving factors used in CA-Markov land change model.

mangrove ecosystem, compared to mixed vegetation, and cropland
ecosystems (Fig. S8). The annual NPP derived from five NPP models
are reported in Table S12. Among the five models, the estimated
NPP (gC m~2 year~!) was maximum for the CASA model, followed
by ECLUE, GLO-PEM, MOD17, and VPM model.

The linear association among the NPP models were evaluated
and presented in Figs. S9, $10, S11, S12, S13. In 1988, the highest R?
value was accounted for VPM/ECLUE NPP, followed by MOD17/GLO-
PEM, MOD17/ECLUE, GLO-PEM/ECLUE, VPM/GLO-PEM, VPM/
MOD17, GLO-PEM/CASA, ECLUE/CASA, VPM/CASA, and MOD17/
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CASA models (Fig. S9). In 2003, the best-paired association was
observed between VPM/ECLUE, MOD17/GLOPEM, GLO-PEM/ECLUE,
MOD17/ECLUE, VPM/MOD17, VPM/GLO-PEM, MOD17/CASA, GLO-
PEM/CASA, ECLUE/CASA, and VPM/CASA NPP (Fig. S10). In 2013,
the best model performances were observed between VPM/ECLUE,
followed by VPM/MOD17, GLO-PEM/ECLUE, MOD17/ECLUE, VPM/
GLO-PEM, MOD17/GLO-PEM, VPM/CASA, ECLUE/CASA, GLO-PEM/
CASA, and MOD17/CASA, respectively (Fig. S11). In the last refer-
ence year (2017), the high R? value was calculated between the
VPM/ECLUE, followed by GLO-PEM/ECLUE, VPM/MOD17, MOD17/
ECLUE, VPM/GLO-PEM, MOD17/GLO-PEM, VPM/CASA, ECLUE/
CASA, GLO-PEM/CASA, and MOD17/CASA NPP (Fig. S12). The spatial
association between the NPP models were also evaluated using the
Pearson correlation coefficient, and results are reported in Fig. S13.
For all five ecosystem models, the high spatial correlation was
observed over the mangrove region (Fig. S13).

3.3. Spatiotemporal distribution and changes in ecosystem services

Fig. 2 shows the spatial distribution of ESVs of the key ESs of the
Sundarbans region derived from the multiple biophysical models
and approaches. Most of these services are highly concentrated
over the mangrove region, except for the disturbance regulation
service. The maximum per-unit ESVs was estimated for habitat
service, nutrient cycling, and gas regulation, whereas, a lower per
unit ESVs were approximated for waste treatment, water supply,
raw material production services. The biophysical value of key ESs
that is derived from the InVEST model is shown in Fig. 3. The carbon
sequestration value ranges from 0 to 13.5 MgC per pixel. The total
sequestered carbon (MgC) is estimated as 78331769.38,
78521069.19, 79633984.38, 77009844.88, 81684981.32,
82493356.19, 83647453.32, and 84678479.19 in 1973, 1988, 2003,
2013, 2018, 2025, 2035, and 2045, respectively (Table 2). Moreover,
due to the expansion of productive natural capitals from 2018 to
2045, the biophysical and economic values of carbon sequestration
service will be increased with time. The habitat degradation value
ranges from O to 0.7, and the maximum habitat degradation and
fragmentation is happened in and around the Kolkata city region.
This indicates that urbanization can significantly be destabilizing
the ecological stability of an ecosystem by fragmentation of natural
habitats and the necessary ecosystem services that are essential for
sustaining the population and organisms.

The nitrogen export and phosphorous export values (kg pixel )
were found highest over the cropland region, and the minimum
values are obtained over the mangrove and wetland ecosystem. The
sediment retention service (ton pixel ') is maximum over the
cropland and mixed vegetation region, and lowest in wetland and
mangrove region. The biophysical values of water yield service
(mm) is varied from 429.05 to 2109.57, which is strongly associated
with the variability of annual precipitation and evaporation. The
maximum water yield values were calculated over the cropland and
mixed vegetation region, and the comparatively lower value is
being estimated for the mangrove region (Fig. 3). Fig. S14 shows the
biophysical values of the nitrogen and phosphorus export and ni-
trogen and phosphorus load services that were estimated at the
watershed level. Among the 13 watersheds of the study region, the
maximum values of the said services were obtained at watershed
number 66 and 73, which is mostly covered by the mangrove forest.
The sediment retention and sediment export services were found
high for watershed 66, 72, and 73 (Fig. S14). Noteworthy, the bio-
physical estimates of the key ESs of Sundarbans derived from the
InVEST and CA-Markov models resemble a decline status during
1973—2045 (Figs. S15, S16, S17, S18).

The spatiotemporal changes of the key ESs are evaluated at
P < 0.05 significance level. To assess the direction (positive and

negative) of such changes, the pixel level time series trend test was
performed. Except for the habitat and waste treatment services,
statistically significant changes were found for the rest of the ESs
(Figs. 4 and 5, Fig. S19). The black and white color was showing a
statistically significant and insignificant change during
(1982—2017), while the positive and negative slope indicates the
positive and negative changes of the ESs. Both of these analyses are
unveiling the declining status of the ESs in the Sundarbans region.
These changes are most prominent over the mangrove region and
Kolkata suburban region. The declining status of EVI/NDVI could be
aligned with this finding. During the last half of the research period
(2000—2017), a sharp decline of the biophysical variables was
observed. Among the nine ESs, climate regulation, gas regulation,
and disturbance regulation are the most important regulating
services of the Sundarbans region. The declining status of these
ecosystem services, therefore, unveils a serious socio-economic and
livelihood threats to the millions of coastal communities and resi-
dents living in this fragile ecosystem.

3.4. Examining the synergy and trade-offs among the ecosystem
services

The synergy and tradeoffs of the ESs depend on several factors.
These include the nature of the ecosystem services, ecosystem
types, scale factors, etc. The synergetic and trade-off among the five
ESs is evaluated and reported in Figs. 6 and 7, and Table 3. Among
the 21 pairs of ESs, 4 pairs (N_Exp/P_Exp, N_Exp/WY, P_Exp/WY,
and Sed_Exp/Sed_Ret) have produced strong positive associations
supported by high correlation (r) and regression (R?) values. Only 3
pairs (C/N_Exp, C/P_Exp, and C/WY) have exhibited a moderate to a
weak association, and the rest of the 14 pairs have not produced any
obvious correlation. Moreover, among the 21 comparison pairs, 18
of them have created a positive association, and 3 pairs were
exhibited a negative correlation; however, all those pairs were
statistically significant at P < 0.05 (Figs. 6 and 7, Table 3). The carbon
sequestration (C) service is found highly correlated (negatively)
with the other ESs (Fig. 7). The nutrient cycling service, which is
labeled as nitrogen and phosphorous export values in this study, is
exhibited a statistically significant positive association with the
water yield service. Table 4 shows the positive and negative asso-
ciation between the LULC change driving factors and ESs. Except for
the carbon sequestration service, all those explanatory factors have
produced a statistically significant negative correlation with the
ESs.

3.5. Estimating the future LULC and ecosystem services

The fuzzy distance of the four groups of explanatory factors; i.e.
proximity factors (distance to highway, rail line, road), socio-
economic and development factors (distance to residential center,
rural-urban center, urban activity center), physiographic factors
(elevation, slope), and demographic factor (population density) is
shown in (Fig. 8). Using the explanatory power of these driving
factors, the allocation and changes of future LULC are estimated
(Fig. S20). The probability of conversion from mangrove to the
coastal estuary and all classes to urban land is evaluated subse-
quently. Due to the severe threat of sea level rising and resulting in
exaggerated coastal erosion, a significant mangrove area would be
lost in the coming decades (Fig. S21). Urban sprawl would be
evident in and around the Kolkata suburban region at the expense
of natural vegetation and cropland (Fig. S22).

The ESs for the future period is calculated from CA-Markov
based transitional suitability maps. The biophysical values of five
key ESs, i.e., carbon sequestration, habitat degradation, nitrogen
export, phosphorous export, sediment retention, and water yield
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services were calculated for the three reference years 2025, 2035,
and 2045 (Fig. 9). The carbon sequestration service (Mg C) was
found maximum over the mangrove and mixed vegetation region.
The water bodies, including the coastal estuary and inland wetland,
do not have any substantial contribution in sequestrating gaseous
carbon from the atmosphere. This could be due to the InVEST and
other biophysical approaches employed in this study to quantify
the carbon pools, and fluxes merely addressed the terrestrial car-
bon sequestration, and therefore, the quantitative estimates of the
blue carbon pools and fluxes were excluded from the calculation.
The future habitat degradation is strongly associated with the
process of urbanization and distribution of transport networks
(highway, road, rail line) across the region. The nitrogen and
phosphorus export services were maximum over the cropland
ecosystem, and minimum over the mangrove, mixed vegetation
regions.

The spatiotemporal changes of the mentioned services during
1973—-2045 is shown in Fig. 10. A slight decrease of carbon
sequestration service values is documented over the cropland and
mangrove forested region, while such changes were more promi-
nent over the urban region and land which would have converted
to the shrimp ponds during the study period. The habitat degra-
dation is apparent, and it is predominantly due to the alteration of
cropland and natural vegetation to urban land. Except for the ni-
trogen and phosphorus export services, the remaining services
have shown an incremental trend over the forested mangrove re-
gion (Fig. 10). The spatial distribution of the ESs had been evaluated
using Moran’s | statistics (Figs. S23 and 24). For all reference years, a
statistically significant hotspot cluster was observed. These ten-
dencies would be more noticeable in future years (2035, 2045). This
suggests that the ESs providing capacity of the natural capitals
would be limited to certain areas, and overall ESs delivery capacity
of the region would be decreased.

4. Discussion

The performance of the five NPP models was evaluated using
the Pearson correlation (r) (both spatial and non-spatial), coeffi-
cient of determination (R?), student’s t-test (t) and results sug-
gested that all those models significantly varied across the
ecosystems (P < 0.0001) (Figs. S7, S8, S9, S10, S11, S12, S13). The
NPP derived from the said models were also validated with the
eddy covariance flux tower data (Rodda et al., 2016). Among the five
models, the MOD17 model produced the most consistent estimates,
and was thus selected for the subsequent analysis. Fig. S8 revealed
that the model performance over the cropland region was not
prominent as those obtained for the mangrove and mixed vegeta-
tion regions. Biome specific light use efficiency and incomparable
environmental stress factors (temperature stress scalar, water
stress scalar) that have approximated for each model were prob-
ably the principal reasons for varied model performances observed
in this study (Yuan et al., 2014; Sannigrahi et al., 2018).

The water stress factor is a crucial limiting factor that predom-
inantly determines model accuracies and uncertainties for both
rainfed and moisture deficient ecosystems (Yuan et al., 2014; Wagle
et al., 2017). This study adopted multiple approaches to parame-
terize the water and temperature limiting factors. Like for the
calculation of water scalar factor in the CASA model, evaporative
function equation (ratio of actual and potential evapotranspiration)
was used (Yuan et al., 2015), the energy balance approach (ratio of
latent heat and sensible heat) in the GLO-PEM and ECLUE models
was used (Prince and Goward, 1995; Yuan et al., 2014). Further-
more, for estimating water stress scalar for VPM and MOD17
models, the remote sensing-based band rationing and vapor pres-
sure deficit function was utilized (Zhang et al., 2016). Likewise,

several discrete methods were approximated to evaluate the tem-
perature stress effects on potential light use efficiency and photo-
synthesis. These structural differences might be responsible for the
model differences observed in this study.

The biophysical and economic values of the key ESs were
calculated for both time-series (1982—2017) and individual years
(1973, 1988, 2003, 2013, 2018, 2025, 2035, 2045) (Figs. 2—5). The
highest ESVs (US$ ha~!) was estimated for habitat service (30780),
nutrient cycling (12626), and gas regulation (7224.81), whereas,
lower values of ESV were approximated for water regulation
(347.81), raw material production (777.82) and waste treatment
(13.57) services. Since two different approaches were adopted:
biophysical approach, which is entirely based on the calculation of
NPP, and model-based approach, which is connected to InVEST and
CA-Markov based modeling, it has found that most of these services
evaluated in this study were highly sensitive to the changes of EVI/
NDVI and LULC (Carreno et al., 2012; Yu and Han, 2016; Zhang et al.,
2017). Furthermore, the spatial trend and slope estimation sug-
gested a significant decline in the key ESs of the Sundarbans region.
This pixel-level estimation provides more intuitive pictures about
the status of ESs than that of any conventional non-spatial esti-
mates. However, this invites uncertainties as the visual quality of
the pixel is highly affected by atmospheric conditions and chances
of getting erroneous pixel reflectance would be high if proper pre-
processing was deployed prior to the final analysis. The declining
status of the ESs is more prominent during the second phase of the
research period (2000—2017). The key biophysical variables (EVI,
NDVI, fPAR), which were used as inputs for estimating the time-
series NPP and ESs, were found decreasing during 2000—2017.
These findings could be aligned with the degradation of ESs in the
Sundarbans.

Among the popular approaches, such as benefit transfer method
(Costanza et al., 2014; 2014), biophysical modelling and mapping
(Nelson et al., 2009), contingent valuation (Carson, 2000), statistical
value transfer (de Groot et al., 2012), travel cost (Mayer and
Woltering, 2018), replacement cost (Forster et al., 2019), hedonic
methods (Sander and Haight, 2012), available for estimating the
valuation and mapping of ESs, only the biophysical modeling and
spatially explicit integrated modeling approaches were incorpo-
rated in this study to calculate the economic and biophysical values
of multiple key ESs of Sundarbans. The biophysical approaches
were mainly used for the calculation of economic values of the ESs,
while the spatially explicit models integrated with InVEST and CA-
Markov produced the biophysical values of the services. According
to Nelson et al. (2009), the spatially explicit tools like InVEST is
highly effective as it can perform at any levels of complication and
produced the biophysical and monetary values simultaneously,
depending on the requirements of decision-makers and concerned
stakeholders. However, this turns the model sensitive to a specific
condition like data availability and variation of system dynamics
(Nelson et al., 2009).

The degradation of natural capitals can be significantly affected
by the ESs provision by altering the structure, process, functions of
an ecosystem (Chen et al., 2019). Among the six primary ESs that
were derived from the InVEST biophysical model, one ES (carbon
capture) entirely depends on the fluctuation of LULC inputs. This
summarily designates that any form of land management policies
and land reform strategies that encourage the conversion of pro-
ductive land, especially the highly productive mangrove forest, for
the development or any other financial benefits, will be disrupted
the ideal man-nature balance of this ecosystem. The rest of the ESs
including the nitrogen and phosphorous export, sediment reten-
tion, and water yield services are connected to both climatic and
land-use dynamics, and thus, make them more sensitive and
vulnerable to any unwanted modification. The dissemination of
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productive lands will entirely govern the future ESs provision and
spatial distribution. This also resonates the need for preserving
valuable natural capitals, which provide the essential goods, ser-
vices, and functions to the betterment of human welfare and overall
societal well-being. Additionally, it is required to integrate different
valuation approaches in order to assess environmental well-being
and social-ecological impacts under changing climate and land
degradation and to better understand the amplification effect —
synergic and trade-off interactions of drivers that could intensify
the causal effects on ESs or offset effects — changes in one driver can
modulate the effect of another driver on ESs.

5. Conclusion

Using both biophysical and spatially explicit integrated models,
this study evaluated and quantified biophysical and monetary
values of key ecosystem services in the Sundarbans biosphere re-
gion, India. Quantification was made both in time series
(1982—-2017) and individual years (1973, 1988, 2003, 2013, 2018,
2025, 2035, 2045) to understand the long-term ecological status of
the region. The key biophysical variables including EVI, NDVI fPAR,
NPP revealed a decremental state during the research period,
especially in the western part of the Sundarbans and Kolkata sub-
urban region. The fast-tracked urbanization especially over Kolkata
and its surrounding region, the disappearance of mangroves due to
severe coastal erosion, and the increasing salinity especially the
western part of the region, could be associated with the declining
status of EVI, NDVI, and NPP observed in this study. Among the nine
ecosystem services evaluated in this study, climate regulation, gas
regulation, and disturbance regulation are the most important
regulating services of the Sundarbans region. The declining status
of these ecosystem services, therefore, unveils a serious socio-
economic and livelihood threats to the millions of coastal com-
munities and residents living in this fragile ecosystem. The out-
comes of this study could provide an important reference to the
land administrators, researchers, and decision-makers to compre-
hend the expected human-nature juxtaposition in protected nat-
ural reserve regions like the Sundarbans. Therefore, the generic
approaches and methods proposed in this study have the potential
of resolving the problems encountered by the decision-makers in
local and regional scale policy formulation. The ESs chosen in this
study is highly relevant to the ecosystems and ecology of the
Sundarbans. However, several other ESs, whose biophysical and
economic significance were not evaluated here but should be
evaluated and reported, will be cover with some future studies.
Several other factors are also responsible for the degradation of
ecosystem services.
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